Labels
Effect of wind farms on radar signals
B-1 Bomber Targeting pod software for precision
Sometime ago, the U.S Air force advanced 23 million dollars to Boeing to finish the second phase of the B-1 laptop-controlled Targeting Pod software upgrade. The second phase enables the bomber’s targeting pod to find stationary targets and transmit GPS co-ordinates using its avionics system to the weapons- a process that was very manual and used to introduce many errors. It will also complete the integration of the Sniper pod with B-1 programs enable single-moving –target kill capability using laser technology of the Guided Bomb unit.
ESP PC-based visual simulation for better pilot training is also provided to ensure pilots are best equiped with knowledge and practical exposure of the combat missions with less expenses for faster learning.
War fighter pilots stand to highly benefit from this massive resource to hone up their skills in battle. This is after Lockheed Martin and Microsoft Corp. signed a license agreement to continue development of Microsoft’s ESP PC-based visual simulation software platform. Lockheed Martin, now with access to the ESP technology portfolio, will be able to build more economic simulation solutions for customized training of the various customers.
With that in mind, testing and learning has been accelerated in recent times and is nearly done, and may lead to the Air Force's Air Combat Command plans to approve sending pod-equipped bombers on operational missions by mid-summer. With the powerful software, the Pilot in command can easily cross check co-ordinates and visual locations of targets before dropping weapons and would be very profitable for combat for example in places like Iraq and Afghanistan where the B1 Bomber has been used in the past.
The TaxiBot is here
We are still all about reducing emissions and now at airport level where taxing is another area that huge jets like the Airbus and Boeing use up and burn a lot of fuel while taxing around to a hanger or maintenance bays. This is where we bring on stage one Ricardo who has worked with Israeli Aerospace Industries(IAI) for about 15 months to develop the TaxiBot- a 52-tonne, six wheel pilot operated robotics vehicle without aircraft width, taxiway or airway limits. It could require airport infrastructure changes but will end up reducing noise and air pollution. The structure includes an IAI patented turret, energy absorption systems and controls. The aircraft nose wheel is clamped on to the turret that can tilt,rotate and move axially. The bot has 2-500hp diesel V8 engines a, hydrostatic drive system and a hydraulic system that can handle four wheel steering and aircraft pickup and clamp actuators. It has electronic controllers for force, communication, navigation and speed control.
Its operation is in such a way that, once the bot is engaged with the aircraft nose and locked in place, the turret is able to rotate freely and even take steering and braking commands from the nose wheel directly such that the pilot will not notice that he or she is being towed by a bot. It is however, imperative to learn that aircraft brakes slow down the aircraft and not the tug. At the end of the process, the bot won’t require any driver apart from the pilot in the aircraft. After testing was done, the demo version was shipped to Toulouse airport for further field tests and improvements done before production.
Ricardo’s project that run since 2008 underwent successful testing as seen in the various photos here and the contract has been renewed to allow Ricardo to continue the development of the TaxiBot to the next level. The testing of the first TaxiBot was carried out in 2010, towing an Airbus A340 aircraft at Toulouse airport and subsequently, a Boeing 747 of the Lufthansa fleet at Frankfurt while being maneuvered by the pilots of the respective aircraft. The weather at Frankfurt was not very good but according to IAI reports of this testing, a Lufthansa test pilot was quoted to have really praised its performance on icy and slippery grounds. The second phase of development is expected to see the first commercial implementation of the TaxiBot this year.
About Me
- AICHA EUGENE
- Aicha Eugene is a Mechatronics Engineering student at JKUAT in Kenya. He is also a student member of the SAE.